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S1 Introduction6

This supplementary information provides full details of the mathematical model,7

as well as additional figures. It is all contained within this pdf.8

The schematic illustrations from the main text are reproduced here (figure S1) for9

ease of reference. A list of primary variables is also included in table S1.10

In section S2 we describe the plastic-ice-approximation model for the ice-sheet to-11

pography, and provide a simple parameterisation for how the melt rate m and catchment12

basin length `a vary with changing equilibrium line altitude (as a proxy for changing cli-13

mate).14

In section S3 we describe the channel model from the main text in greater detail.15

In section S4 we analyse the behaviour of the boundary layer near the margin, where16

deposition occurs. This allows us to calculate the total deposition rate QD in terms of17

the sediment flux and water flux being delivered to the margin, and motivates the scal-18

ing in figure 4 of the main text.19

Section S5 discusses the role of bed topography in altering the deposition dynam-20

ics.21

Finally, in order to discuss the impact of evolving climate, we provide scaling ar-22

guments in section S6 for how the width `c of the catchment basin, and hence water flux23

Qm, vary with changing melt rate. The estimates of catchment basin width follow es-24

sentially the same idea as existing arguments for subglacial channel spacing [Boulton et al.,25

2009; Schoof , 2010; Hewitt , 2011], finding the scale over which effective pressure gradi-26

ents are able to draw water laterally into a channel. The result is to suggest that when27

the equilibrium line altitude is higher (so there is more melting overall), the catchment28

basins are longer and narrower, but the water flux through each individual channel is29

larger.30

S2 Ice-sheet topography and surface melt44

The shape of the ice sheet margin during retreat is likely to have varied in time de-45

pending on underlying topography and the history of accumulation and melt. For the46

purposes of this study, we adopt a generic shape of the ice sheet that remains approx-47

imately constant, relative to the margin, as the margin retreats. The simplest option is48

the plastic ice model [Nye, 1952; Weertman, 1961], in which the horizontal shear stress49

in the ice is set equal to a yield stress τc,50

ρigh

(
∂b

∂X
+
∂h

∂X

)
= τc, h = 0 at X = 0. (1)
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Figure S1. (a) Side and (b) plan views of the esker formation mechanism discussed in this

paper. As the ice-sheet margin retreats, subglacial channels of cross-sectional area S deposit

sediments near the margin, leaving behind an esker of cross-sectional area A. The size of the

deposit depends on sediment supply e, melt-water supply m+mb, channel spacing `c, and retreat

rate Vm, all of which can vary through time. (c) Downstream evolution channel cross section.

Red arrows denote wall melting. Black arrows denote creep closure and sediment deposition.

(i) Far from the margin sediment flux is below the carrying capacity and the cross-sectional

area S is governed by a balance between wall melting and creep closure; (ii) as the margin is

approached and the channel enlarges, deposition starts to occur; (iii) at the margin a deposit of

cross-sectional area A is formed and there is a balance between wall melting and deposition; (iiia)

alternatively the channel may move from side to side over time, depositing sediment over a wider

area (the model does not distinguish between the situations in (iii) and (iiia)).
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Q Water flux (m3 s−1)
Qs Sediment flux (m3 s−1)
Qm Water flux at margin (m3 s−1)
Qsm Sediment flux approaching margin (m3 s−1)
S Cross-sectional area of channel (m2)
A Cross-sectional area of sediment (m2)
N Effective pressure (Pa)
Qeq Equilibrium sediment flux (m3 s−1)
Vm Margin retreat rate (m s−1)
D Deposition rate (m2 s−1)
QD Total (volumetric) deposition rate (m3 s−1)
Ψ Hydraulic potential gradient (Pa m−1)
Ψs Topographic potential gradient (N = 0) (Pa m−1)
Ψb Atmospheric potential gradient (pw = 0) (Pa m−1)

Table S1. Primary variables in the model.43
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Figure S2. An isostatically depressed ice sheet margin from the solution to (1) and (2),

showing bed and surface elevations. For comparison, black dashed lines show the ‘Archimedean’

solution with b = −(ρi/ρm)h, to which the solution converges in the far field, but which is not a

good approximation close to the margin. Red dashed lines show the square-root approximation

b = b0, h = (2τcX/ρig)1/2 that is used for the near-margin analysis of the subglacial channel.
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Here h is the ice thickness, b is the bed topography, and X is distance backward from51

the margin, while ρi is the density of ice, and g is the gravitational acceleration.52

We assume that the bed is horizontal in the absence of any ice, but account for the53

elastic component of isostatic depression by treating the lithosphere as an elastic sheet54

with bending stiffness B overlying a mantle of density ρm, subject to the weight of the55

ice sheet on top. The bed elevation therefore satisfies56

B
∂4b

∂X4
+ ρmgb = −ρigh,

∂2b

∂X2
,
∂3b

∂X3
→ 0 as X → ±∞. (2)

There is a natural bending length in this equation, over which the lithosphere responds57

to loading, `b = (B/ρmg)1/4 ≈ 75 km. The solution to (1) and (2) is shown in figure58

S2. The square-root profile h = (2τcX/ρig)1/2 (which is the exact solution on a flat bed)59

is a good approximation close to the margin. This model ignores the timescale for iso-60

static adjustment.61

The problem (1)-(2) can in fact be scaled to remove all parameters except ρi/ρm,62

and we find that the bed height b0 and bed slope b1 at the margin are63

b0 = −0.18

(
B

ρmg

)1/8(
τc
ρig

)1/2

≈ −164 m, b1 = 0.18
(ρmg
B

)1/8( τc
ρig

)1/2

≈ 0.002, (3)

where the first numerical factors come from the solution of the scaled problem and the64

second are for the specific values from Table S2.65

Strictly speaking, the yield-stress balance in (1) assumes that the ice is moving in66

the direction of the surface slope. The ice velocity is determined from mass conserva-67

tion (the ice must move in such a way as to sustain the equilibrium topography), and68

during margin retreat this can lead to an inconsistency. Instead, there is a stagnant re-69

gion near the margin (in which the ice simply down-wastes), and the yielded region starts70

a short distance upstream of the margin. The stagnant region is typically small, and more-71

over the stress balance in (1) is not strictly appropriate all the way to the margin [Nye,72

1967]. Therefore we will ignore this slight inconsistency and use the same shape for both73

stagnant and moving ice.74

In discussing ice-sheet retreat, we adopt a simple estimate of melting rates and re-80

treat rates based on a constant accumulation rate a and a surface melt rate m that varies81
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linearly with surface elevation s = b+ h according to82

m = max [0, λ(sa − s)] . (4)

Here sa is the elevation at which melting begins and λ is a melting lapse-rate. The equi-83

librium line altitude is given by se = sa − a/λ, and either sa or se can be viewed as84

controls that vary through time to parameterise climatic forcing. We expect these to vary85

roughly linearly with mean air temperature. Using the approximate square-root profile86

s = b0 + (2τcX/ρig)1/2 (see figure S2), the length of the ablation zone (where surface87

melting occurs) is `a = ρig(sa−b0)2/2τc, and the total melt rate per unit width of the88

ice margin is89

M =

∫ `a

0

m dX =
ρigλ(sa − b0)3

6τc
. (5)

In terms of this total melt rate, the average surface melt over the ablation area is M/`a,90

and the length of the ablation zone is91

`a =

(
9ρig

2τc

)1/3
M2/3

λ2/3
. (6)

For reference, the total melt rate M takes values on the order of 10−3 m2 s−1, which would92

correspond to an average melt rate of 1 m y−1 over a 30 km flow-line, and would pro-93

vide a channel flux of 10 m3 s−1 over a 10 km wide catchment.94

Note that the total melt rate M increases roughly as the cube of the ablation al-95

titude sa, which itself can be expected to vary linearly with temperature. Thus the to-96

tal melt rate increases strongly with increasing temperature. This is simply a consequence97

of the convex shape of the ice sheet which causes a large expansion in the melting area98

as well as an increase in melt rate everywhere.99

S3 Subglacial channel dynamics100

Here we recapitulate the model described in the main text, elaborating on some101

details and assumptions.102

Water flow at the bed of the ice sheet is driven by gradients of the hydraulic po-103

tential104

Φ = ρwgb+ pw = ρigh+ ρwgb−N, (7)

where b is the bed elevation, h is the ice thickness, and the effective pressure, N = ρigh−105

pw, is the difference between the hydrostatic ice pressure and the water pressure pw. In106

addition, ρw is the density of water, ρi is the density of ice, and g is the gravitational107

acceleration. We split the potential gradient Ψ = −∂Φ/∂x into components, writing108

Ψ = Ψs +
∂N

∂x
, Ψs = −ρig

∂h

∂x
+ Ψb, Ψb = −ρwg

∂b

∂x
. (8)

Here x measures distance along the channel, which we assume to be perpendicular to109

the ice-sheet margin. Ψb would be the potential gradient for flow at atmospheric pres-110

sure along the bed (pw = 0), and Ψs would be the potential gradient if the basal wa-111

ter pressure equaled the overburden ice pressure (N = 0).112

The conservation equation for water is given by113

∂Q

∂x
= `c(mb +m), (9)

Here Q is the water flux (discharge), x is distance along the channel, `c is the width of114

the channel catchment, mb is the basal melt rate, and m is the surface melt rate, which115

is assumed to be delivered into the channel by a combination of moulins, crevasses and116
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tributary channels. Wall melting and temporal changes in channel storage are insignif-117

icant to the mass balance. The discharge is related to the cross-sectional area of the chan-118

nel S by a turbulent drag law, which can be written in the form [Röthlisberger , 1972; Nye,119

1976; Flowers, 2015],120

Q = KcS
5/4Ψ1/2, (10)

where Kc is a constant. For a semi-circular cross-section and assuming a turbulent drag121

law τ = fρwU
2, with U = Q/S, this is given by K2

c = π1/2/21/2(π + 2)fρw.122

The equivalent conservation equation for sediment is the Exner equation,123

(1− ns)
∂A

∂t
+
∂Qs

∂x
= `ce, (11)

in which Qs is the sediment flux, A is the cross-sectional area of deposited sediments,124

ns is the porosity of the deposited sediments, and e is the sediment source expressed as125

an average value across the catchment width `c. The sediment source e is assumed to126

come from the surrounding bed and is carried into the channel by inflowing water, or127

by melting out of the ice walls. Its magnitude is almost certainly a major control on es-128

ker formation, but for the purposes of this model we take it to be prescribed. We expect129

typical values on the order of 1 mm y−1, based upon broad-scale estimates of glacial ero-130

sion [Hallet et al., 1996; Cowton et al., 2012] (which must ultimately provide the sed-131

iment supply on longer timescales).132

The Exner equation serves to determine both the sediment flux Qs and the evo-133

lution of the deposited area A. This is achieved through the constraint134

Qs ≤ Qeq and A = 0, or Qs = Qeq and A ≥ 0, (12)

where Qeq is the carrying capacity of the channel, discussed below. This expresses the135

two cases of supply- or transport- limited sediment load. In the first case, there is no sed-136

iment to pick up from the bed and the sediment flux is simply determined by the source137

(∂Qs/∂x = `ce). In the second case the sediment load is at capacity and the deposited138

area may either grow or shrink to sustain the equilibrium sediment flux. It is assumed139

in (12) that the original channel bed is immobile. A sediment-floored channel could be140

accommodated by removing the constraint that A ≥ 0, in which case the the channel141

would always act at its carrying capacity and negative values of A would correspond to142

areas where the original channel floor has been eroded. Such an extension of the model143

would allow for the generation of meltwater channels and tunnel valleys, but is not pur-144

sued here.145

The carrying capacity depends upon the channel width and the turbulent shear stress,146

which is related to the average water speed U = Q/S. We therefore write the equilib-147

rium sediment flux as148

Qeq(Q,S). (13)

As a concrete example, we adopt the Meyer-Peter Müller law,149

qs = 8

(
∆ρsgd

3

ρw

)1/2

max

(
τ

∆ρsgd
− τ∗c , 0

)3/2

, (14)

which relates the sediment flux per unit width qs and the turbulent shear stress τ . Here150

∆ρs = ρs − ρw is the buoyant density of sediment relative to water, d is a represen-151

tative grain diameter, and τ∗c ≈ 0.047 is a critical Shields stress for sediment motion152

[Meyer-Peter and Mueller , 1948]. Using the turbulent drag parameterisation τ = fρwU
2,153

and noting that the width of the channel floor is (8S/π)1/2, this gives154

Qeq(Q,S) = 8

(
8∆ρsgd

3S

πρw

)1/2

max

(
fρwQ

2

∆ρsgdS2
− τ∗c , 0

)3/2

. (15)
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We emphasise that this particular choice of sediment flux law is not fundamental to the155

model and other formulations could be expressed in a similar form [e.g. van Rijn, 1984a,b;156

Garcia and Parker , 1991; Beaud et al., 2016, 2018].157

An equivalent way of expressing sediment conservation is to split into two equa-158

tions, for the deposited and mobilised sediment, connected by the deposition rate D,159

∂Qs

∂x
= `ce−D, (16)

160

∂A

∂t
=

D

1− ns
. (17)

The deposition rate can be defined in terms of a settling length `eq over which Qs ad-161

justs to Qeq [Einstein, 1968; Phillips and Sutherland , 1989],162

D =

{
Qs−Qeq

`eq
Qs > Qeq or A > 0,

0 otherwise.
(18)

This formulation is more convenient for numerical computations than the complemen-163

tarity statement in (12), which is equivalent to taking the limit `eq → 0. We expect `eq164

to be small compared to the length scales of interest, so view the two approaches as equiv-165

alent. Our numerical solutions make use of (18).166

A slightly different method of distinguishing the different cases of transport- and167

supply- limited sediment dynamics is invoked by Beaud et al. [2018], in which an addi-168

tional variable, the mobilised sediment volume, is used to allow the fraction Qs/Qeq to169

vary between 0 and 1 depending on sediment supply and the fraction of the bed that can170

be mobilised. There appear to be a number of different ways of treating this problem,171

which are to some extent complementary, but which may differ in their numerical im-172

plementation.173

The final ingredient is the evolution equation for the channel cross-section, describ-174

ing the processes in figure S1. This describes the competition between melt-driven open-175

ing, viscous creep-driven closure of the channel walls, and infill by deposition of sediments,176

∂S

∂t
=
Q(Ψ + βΨb)

ρiL̃
− ÃSNn − D

1− ns
. (19)

The factor β = ρwcwγ/(1−ρwcwγ) accounts for the pressure dependence of the melt-177

ing point, where cw is the specific heat capacity of water and γ is the Clapeyron slope,178

and L̃ = (1+β)L is a modified latent heat. Ã parameterises ice creep, and for a semi-179

circular channel is given by Ã = 2AGlen/n
n where AGlen and n ≈ 3 are the coefficient180

and exponent in Glen’s flow law for ice.181

To summarise, the full model is given by (8)-(10), (16)-(18), and (19). With given191

topography (b and h), melt inputs (mb and m), and sediment input (e), the equations192

can be solved numerically to determine the water flux, channel cross-section, hydraulic193

potential, and sediment flux. All of these are coupled together, so the behaviour of the194

model is quite complex. The boundary conditions are that the effective pressure is zero195

at the margin (hydraulic potential is atmospheric, or hydrostatic in a proglacial lake),196

and the discharge is zero at the start of the domain (at x−xm = −100 km in our ex-197

amples).198

We solve the model in steady state, in a frame that retreats with the ice margin.199

That means the time derivatives ∂/∂t are replaced by ‘advective’ derivatives −Vm∂/∂x.200

An example solution is shown in figure 3 of the main text and reproduced in figure S3201

for reference. Discharge increases with distance downstream, as does the cross-sectional202

channel area. However, the area increases more significantly near the margin, due to thin-203

ner ice which limits creep closure. This causes the velocity of the water to reduce and204
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Figure S3. Steady solution to the model showing (a) hydraulic head, (b) discharge, (c) cross-

sectional area, (d) sediment flux (dashed line is carrying capacity Qeq), and (e) deposition rate.

Right-hand panels show an enlargement of the region near the margin. The sediment source e

is proportional to the meltwater source, with e/m = 0.003 (darker shading) and 0.002 (lighter

shading, obscured for most variables), and grey dashed lines show the equivalent solution when

there is no sediment. Catchment width is `c = 10 km, and the basal melt rate is mb = 5 mm y−1.

Surface melt input is m = max(0, λ(sa − s)), where λ = 3 × 10−3 y−1 and sa = 1000 m is the

elevation below which runoff starts, indicated by the dotted line in (a). The topography is also

shown in black in (a). Other parameter values are in Table S2.
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ρw 1000 kg m−3

ρi 916 kg m−3

ρs 2600 kg m−3

ρm 3300 kg m−3

g 9.8 m s−2

L 3.3× 105 J kg−1

β 0.46
n 3

Ã 1.8× 10−25 Pa−3 s−1

f 0.02

Kc 0.11 m3/2 kg−1/2

τ∗c 0.047
d 1 mm
`eq 100 m
ns 0.3
τc 105 Pa
B 1024 N m

λ 3 m y−1 km−1

Table S2. Parameter values.223

the carrying capacity therefore decreases as the margin is approached [Beaud et al., 2018].205

The usual situation is that the sediment flux is below the carrying capacity until near206

the margin, so deposition occurs predominantly in this region, which we refer to as a bound-207

ary layer, and which we analyse further below.208

It is helpful to define the water flux and sediment flux approaching the margin. The209

water flux is given by210

Qm = `cM, M =

∫ xm

xm−`a
mb +m dx, (20)

where M is the total melt rate per unit width of the margin, xm is the location of the211

margin, and the channel length is assumed to be the same as the catchment basin length212

`a. We mostly ignore mb by comparison with m (as we have done in (5) and in the main213

text).214

Assuming no deposition upstream, the sediment flux arriving towards the margin215

is given simply by the integral of the sediment source along the channel (cf. (20)),216

Qsm = `cE, E =

∫ xm

0

edx. (21)

It is possible, however, that this integrated sediment supply may already exceed the car-217

rying capacity before the margin is approached and in that case Qsm is limited to the218

peak carrying capacity (the obvious maximum of the dashed line in figure S3(d)), which219

we find an expression for below. This is the case of transport-limited upstream flux, which220

we consider unlikely under normal conditions, since the required sediment supply would221

be very large.222

S4 Analysis of near-margin boundary layer224

The growth of the channel happens in a boundary layer roughly a few kilometres225

from the margin. The length scale `0 over which this occurs can be seen by balancing226

the terms in (8), (10), and the first two terms on the right hand side of (19), for a typ-227

ical value of the margin discharge Q0 = Qm given by (20). We assume the plastic scal-228

ing for the ice thickness h0 =
√
τc/ρig `

1/2
0 , and find that suitable scalings for the other229

variables are230

Ψ0 =

(
τcρig

`0

)1/2

, N0 = Ψ0`0, t0 =
1

ÃNn
0

, S0 =

(
Q0

KcΨ
1/2
0

)4/5

, D0 =
Qs0

`0
,

(22)
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and231

`0 =

(
K

4/5
c

ρiL̃Ã

)10/(5n+7)
Q

2/(5n+7)
0

(τcρig)(5n−7)/(5n+7)
, Qs0 =

8f3/2ρw
∆ρsg

(
8

π

)1/2
Q3

0

S
5/2
0

. (23)

The ugly exponents are the result of the non-linearities in the turbulent drag law232

(10) and the flow law for ice. Using the values in Table S2, together with a typical flux233

Q0 = 10 m3 s−1, these are234

Ψ0 ≈ 370 Pa m−1 S0 ≈ 3.4 m2 N0 ≈ 2.4 MPa t0 ≈ 5 d `0 ≈ 6.4 km Qs0 ≈ 0.1 m3 s−1.
(24)

To examine this boundary layer in more detail we write X = xm(t) − x as the235

distance backwards from the margin xm(t), where Vm = −ẋm is the margin retreat rate.236

Within this region, the water and sediment source terms are negligible, so the water flux237

Qm is treated as constant (it is not exactly constant, as seen in figure S3b, but this is238

a reasonable approximation). After adopting the scalings above, the boundary layer is239

governed by the dimensionless equations240

∂N

∂X
= Ψs −

1

S5/2
, −V̂ ∂S

∂X
+ µD =

1

S5/2
+ βΨb − SNn,

∂Qs

∂X
= D, (25)

where V̂ = Vmt0/`0 is the dimensionless retreat rate (typically very small), and241

µ =
Qs0ρiL̃

(1− ns)Q0Ψ0`0
≈ 3.4Q−1/11m (26)

is a measure of the importance of deposition as compared with melting in the kinemat-242

ics of the channel. This numerical value corresponds to the parameters in Table S2 with243

Qm expressed in m3 s−1; since the exponent of Qm is rather small, µ takes a value around244

1 for a broad range of conditions.245

The solution depends on the topography of the ice margin through Ψs and Ψb. We246

use the approximate plastic ice solution from figure S2 in which b = b0 is constant and247

h =
√
τc/ρig (xm−x)1/2. When translated into the scaled coordinates this means Ψs =248

(2X)−1/2 and Ψb = 0. We note that the qualitative behaviour of the boundary layer249

is the same for any choice of topography with h tending to zero at the margin, although250

the effect of non-zero bedslope is discussed later.251

The boundary layer equations (25) are to be solved with N = 0 at X = 0, and252

with far-field matching conditions S ∼ Ψ
−2/5
s , N ∼ Ψ

7/5n
s as X → ∞. These latter253

conditions are appropriate to match with the solution further back under the ice sheet.254

We also have the far-field condition Qs → Qsm, given by (21), and assume that this255

is below the equilibrium load Qeq at large X. Recall that in the equilibrium limit `eq →256

0, we either have Qs < Qeq, in which case D = 0, or we have Qs = Qeq, in which257

case the final equation in (25) determines D. The dimensionless carrying capacity Qeq258

is given by the scaled version of (27), which is259

Qeq = S1/2 max
(
1/S2 − τ̂c, 0

)3/2
, (27)

where τ̂c = τ∗c ∆ρsgdS
2
0/fρwQ

2
0 ≈ 0.004 is the rescaled critical Shields stress. The fact260

that this is small indicates that the turbulent shear stress in the channel is typically well261

above the critical stress for mobilisation. As the margin is approached and Qeq(S) de-262

creases, there is a point XD at which263

Qeq(S) = Qsm, (28)

after which deposition starts to occur. We can therefore write264

D =

{
0 X > XD,
∂Qeq

∂S
∂S
∂X X ≤ XD.

(29)
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Figure S4. (a,b,c) Solutions for the near-margin boundary layer with deposition governed by

(25), shown for Qsm = 0.2 (lighter blue shading) and 0.4 (darker blue shading). Black dashed

lines show the solution with Qsm = 0 (i.e. no sediment), and the red dashed lines show the

approximation described by (34). The solid blue line in (c) is Qs and the dashed line is Qeq. The

other parameters are µ = 1.6, τ̂c = 0 and V̂ = 0.
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(There is a technicality here since the boundary-layer approximation of Qeq actually de-265

creases to zero at large X; this is an artefact of treating Q as constant and the problem266

is avoided by starting the boundary layer at ‘large’ but not infinite X).267

Solutions to (25) are shown in figure S4 for two different values of upstream sed-273

iment flux, and compared to a solution with no sediment. These solutions show how de-274

position acts to limit the growth of the channel towards the margin (as also seen in fig-275

ure S3d). As a result of this choking effect we find that the maximum possible sediment276

flux (the peak of the dashed line in figure S4(c)) is277

Qsmax = 0.65Qs0 ≈ 0.007Q21/22
m . (30)

This is the largest possible value of the upstream sediment flux Qsm. If the integrated278

source (21) is larger than this it indicates that the upstream channel is transport- rather279

than supply-limited.280

The total (volumetric) rate of deposition is281

QD =

∫ ∞
0

D dX = Qsm −Qs(X = 0), (31)

that is, the difference in sediment flux between upstream and the mouth of the channel.282

This is calculated numerically for different dimensionless Qsm and shown in figure S5.283

Unsurprisingly, this deposition rate increases with the sediment supply Qsm; perhaps284

less obviously, the fraction of Qsm that is deposited also increases. This fraction is al-285

ways considerably less than 1, indicating that a large fraction of the sediment supply is286

carried out to the proglacial environment.287

Finally, we note that the Exner equation (11) in the boundary layer becomes (di-288

mensionally)289

(1− ns)Vm
∂A

∂X
+
∂Qs

∂X
= 0, (32)

assuming a steady rate of retreat. Integrating over the boundary layer gives the area of290

the deposit at the channel mouth,291

A(X = 0) =
QD

(1− ns)Vm
. (33)

This simply reflects that the size of the final deposit is determined by the total depo-292

sition rate and the amount of time that deposition has been occurring.293
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Figure S5. (a) Total deposition rate QD for varying upstream sediment supply Qsm, ob-

tained from the solution for the near-margin boundary layer (25). Red dashed line shows the

approximation described by (34), and the black dashed line shows (35). Parameters are µ = 1.6,

τ̂c = 0 and V̂ = 0, and the deposition rates are scaled with the sediment flux scale in (23).

(b) Total deposition rate for bed slope b1 = −0.01 (downwards in direction of flow), 0 and 0.01

(upwards), obtained from solving (25) with Ψb from (36) and βσ = 12.

294

295

296

297

298

299

A reasonable approximation for the dynamics of the boundary layer is obtained if300

we approximate the effective pressure by its limiting behaviour N ≈ (2X)1/2 (this cor-301

responds to the hydraulic potential being approximately atmospheric near the margin).302

We also take V̂ = τ̂c = 0. Until deposition starts, the balance of melting and creep303

closure gives S = N−2n/7 ≈ (2X)−n/7. Therefore Qeq(S) = S−5/2 ≈ (2X)5n/14, so304

we have deposition starting at XD ≈ Q14/5n
sm /2. This leaves an ordinary differential equa-305

tion for the cross-sectional area in the depositional region,306

−5µ

2

1

S7/2

∂S

∂X
=

1

S5/2
− S(2X)n/2, (34)

to be solved backward from X = XD where S = (2XD)−n/7 to X = 0. A happy co-307

incidence of exponents means this equation can be solved analytically, though the result-308

ing formula is unilluminating. This approximate solution is included in figure S4 and fig-309

ure S5. It is particularly valid for small sediment flux Qsm, and expanding the solution310

for small Qsm we can derive a useful expression for the total deposition rate,311

QD ≈ CQ−4/5m Q29/15
sm , C =

3

10

(
π1/2∆ρsg

(8f)3/2ρw

)29/15
(1− ns)(ρiL̃K2

c )−5/3

Ã2/3ρigτc
, (35)

where we have specialised to the case n = 3, and converted the expression to dimen-312

sional quantities, with C ≈ 5.6 s2/15 m−2/5 using the values in Table S2. This expres-313

sion implies that the deposition rate increases approximately quadratically with sediment314

supply Qsm, but decreases approximately linearly with water flux Qm. The expression315

(35) is given in the main text, where it is compared in figure 4 to the full numerical so-316

lutions for a wide range of conditions.317

S5 The role of bed topography318

To investigate the effect of bed topography and pressure melting, we also solve the319

boundary layer model (25) with both positive and negative bed slopes. These enter through320

the term βΨb in (25). In dimensionless form, we have321

Ψb = −σb1, σ =
ρw
ρi

(
ρig`0
τc

)1/2

≈ 23.6Q1/22
m , (36)
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where b1 is the bed slope (positive for an upslope in the direction of water flow), and Qm322

is expressed in m3 s−1.323

Solutions to the boundary layer model (25) with non-zero bed slope give rise to the324

deposition rates shown in figure S5(b). Deposition is reduced when the bed at the mar-325

gin slopes upwards, and increased when the bed slopes downwards. When the bed slope326

is positive, the rate of viscous dissipation increases in order to compensate for the re-327

duced efficiency of wall melting, which is still required in order to counteract both creep328

closure and deposition. This means that the potential gradient is increased (relative to329

what occurs on a flat bed) which keeps the water moving faster and therefore reduces330

the amount of deposition (relative to a flat bed). For low sediment loads there may be331

no deposition at all. Conversely, when the bed slopes downwards, the potential gradi-332

ent is reduced and this leads to greater deposition. It is possible that the channel reaches333

atmospheric pressure upstream of the margin and becomes partially air-filled in this case.334

S6 Channel spacing335

The location of subglacial channels may in some cases be controlled by topogra-336

phy or by the location of moulins, but we concentrate on situtations where there is lit-337

tle underlying topography and we assume that moulins are spaced sufficiently close to-338

gether that the surface water input can be treated as distributed. (Moulin density in the339

ablation area of the present-day Greenland ice sheet is estimated at between 0−0.88 km−2340

[Colgan and Steffen, 2009]). In this case, we expect that the internal dynamics of the341

subglacial drainage system are largely responsible for the spacing of channels.342

Scaling arguments for the spacing of channels have been given previously by Boul-343

ton et al. [2009], Schoof [2010] and Hewitt [2011]. These are slightly different but all es-344

sentially boil down to establishing the distance over which water can be drawn laterally345

into a channel by the water pressure difference between the channel and inter-channel346

watershed.347

We treat the inter-channel region of the subglacial system as a porous layer with348

transmissivity T (transmissivity is related to permeability k and effective layer depth d349

by T = ρwgkd/ηw; an effective transmissivity can be associated with, for instance, flow350

through porous sediments, or linked cavities). Steady-state water conservation requires351

∂

∂x

(
T

ρwg
Ψ

)
+

∂

∂y

(
T

ρwg

∂N

∂y

)
= mb +m, (37)

where x and y are the directions parallel and transverse to the the potential gradient Ψ,352

and mb+m is the melt supply. The integral of this equation over the width of the catch-353

ment basin gives the source term in (9).354

Our estimate of channel spacing comes from the balance of lateral flow with the355

surface melt supply m, suggesting356

`c ∼
(

TN

ρwgm

)1/2

. (38)

If we suppose the relevant pressure is the effective pressure in the channel, it can be re-357

lated to the potential gradient and water flux by the balance of terms in (10) and (19),358

N ∼ K
4/5n
c

(ρiL̃Ã)1/n
Ψ7/5n

s Q1/5n. (39)

Then noting that the channel flux is given by Q ∼ `cM , and taking m ∼M/`a, where359

`a is the length of the channel given by (6), as well as Ψs ∼ (τc/2ρig`a)1/2, we can com-360
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bine these ingredients to obtain a scaling estimate for the spacing as361

`c ∼ BM−(5n+4)/(30n−3), B =

[
TK

4/5n
c

ρwg(ρiL̃Ã)1/n

(
ρig

τcλ2

)(5n−14)/15n
(9/2)1/3

(6λ3)7/15n

]5n/(10n−1)
.

(40)
Using the values in Table S2, and Qm = `cM , this gives362

`c ∼ BM−19/87, Qm ∼ BM68/87. (41)

According to this argument a larger melting rate M leads to larger channels, extending363

further from the margin, but spaced more closely together.364

The actual magnitude of the spacing depends on the value taken for the transmis-365

sivity. This is highly uncertain, and may have varied significantly in time and space de-366

pending on the nature of the distributed drainage system (permeable sediments vs. linked367

cavities, for example) [Boulton et al., 2009; Hewitt , 2011]. A range of values T = 104−368

108 m2 y−1 together with parameters from Table S2, give B ≈ 30−3000 m125/87 s−19/87,369

and for a typical value of M = 10−3 m2 s−1 this gives a large range of estimates, `c ≈370

120 m−14 km. Observed esker spacing suggests that the larger end of this range may371

be more appropriate [Storrar et al., 2014].372
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